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Multiple Regression 
 

Multiple Regression Meaning and Perspective:  

Multiple Regression tells us the exact kind of linear association that exists between a single dependent 

variable and several independent variable. It tells us the exact kind of linear association that exists 

between those variables. It is the simultaneous combination of multiple factors to assess how and to what 

extent they affect a certain outcome. 

The technique breaks down when the nature of the factors themselves is of an unmeasurable or pure-

chance nature. It is extremely powerful when you are trying to develop a “model” for predicting a wide 

variety of outcomes. 

Regression equation allows us to express the relationship between two (or more) variables algebraically. 

Multiple Regression is used to study the relationship. Using multiple regression we can test models about 

precisely which set of variables is influencing the outcome. 

 

Multiple Regression tells you the following characteristics about the relationship between the dependent and 

independent or predictor variable 

o Direction - Whether the relationship is positive (+) or negative (-). 
o Magnitude - The size of the correlation coefficient dependent and the set of predictor variables 

indicates the relative importance of each predictor. 
o Nature - If the relationship is linear or other types relationship such curvilinear.  
o Indicate Redundancy - The relationship may make some predictive variable redundant in their 

predictive effort and are not needed to produce the optimal prediction. Individually, a particular 
independent variable may be correlated to the dependent variable but together with other 
independent variable, the variable may not be needed as other variables are explaining the 
variance.  

Type of Multiple Regression:  

There are three types of Multiple Regression – Standard, Hierarchical, Stepwise Regression. The 

application depends on the type of scenario or problem we are trying to solve for. 

Line Item Standard Hierarchical Stepwise 

Where is it used 
To evaluates relationship 
between dependent and 
independent variable 

To evaluates the 
relationship between 
dependent and 
independent variable 
after controlling the 
effects of some 
independent variable on 
the dependent variable 

To identify the subset of 
independent variables 
that has strongest 
relation to the dependent 
variable and most 
effective in predicting the 
dependent variable 

Variable Analyzed 

All at once. All variable 
are entered in regression 
equation together, at the 
same time 

Variables are entered in 
two stages – 1st where all 
independent variables 
which are to be 
controlled are entered. 
2nd – all variables whose 
relationship is to be 

Variables are added to 
the regression equation 
one at a time, using the 
statistical criterion of 
maximizing the R² of the 
included variables. 
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examined after controls 
are entered 

When to use 

Multiple R and R² to 
measure Strength of the 
relationship between 
independent & dependent 
variables 

A statistical test of the 
change in R² from the 
first stage is used to 
evaluate the importance 
of the variables entered 
in the second stage 

When none of the 
possible addition can 
make a statistically 
significant improvement 
in R², the analysis stops. 
 

   

Semipartial correlations 
are used.  
In a forward stepwise 
regression, the variable 
which would add the 
largest increment to R2  
(i.e. the variable which 
would have the largest 
semipartial correlation) is 
added next (provided it is 
statistically significant). 
 
In a backwards stepwise 
regression, the variable 
which would produce the 
smallest decrease in R2  
(i.e. the variable with the 
smallest semipartial 
correlation) is dropped 
next (provided it is not 
statistically significant.)  

 

Multiple Regression is not Multivariate Regression 

Regression analysis is used to predict the value of one or more responses from a set of predictors. It can also 

be used to estimate the linear association between the predictors and responses. Predictors can be 

continuous or categorical or a mixture of both. 

When there are several (p >1) criterion variables, we could just fit p separate models 

Y1 = Xβ1 

Y2 = Xβ2 

Y3 = Xβ3 

… 

… 

Yp = Xβp 

Multivariate tests provide a way to understand the structure of relations across separate response measures. 

In particular: how many “dimensions” of responses are important? And how do the predictors contribute to 

these? However, they do not give simultaneous tests for all regressions and does not take correlations among 

the y’s into account 
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Difference between Multiple & Multivariate Regression 
 

Multiple Regression Multivariate Regression 

Multiple Regression applies to the number of 
predictors that enter the model (or 
equivalently the design matrix) with a single 
outcome (Y response), 

Multivariate refers to a matrix of response 
vectors.  Here we have multiple dependent 
variables and multiple independent 
variables.  

Example - Suppose that a university wishes to refine its admission criteria so that they admit 
'better' students.  

Dependent Variable = Student Grade (G) Dependent Variable = Student Grade for say 
5 yrs (G1, G2, G3, G4, G5)  

Multiple independent variables = 
Attendance, Gender, Term End Marks, Extra 
Curricular 

Multiple independent variables = 
Attendance, Gender, Term End Marks, Extra 
Curricular 

Result from Analysis - which one of the 
independent variables are good predictors 
for the dependent variable.  

Result from the Analysis - track student 
performance across time and which one of 
the independent variables predict G scores 

better performance across time.  

Which of the independent variables should 
be considered and which one to be ignored 
while student’s admission  

Same independent variables predict 
performance across time so that their 
choice of admissions criteria ensures that 
student performance is consistently high 
across all four years. 

Independent variables  
1 Regression 

Y = Xβ 

Independent variables 
2+ Regression  

Y = X B 

Categorical – ANOVA Categorical – MANOVA 

Objective of using Multiple Linear Regression:  

There are two general applications for multiple regression: prediction and explanation and also to test 

hypothesis in model. However, the last point is a subset of multiple regression for explanation.  

Multiple Regression for Prediction: 

When one uses MR for prediction, one is using a sample to create a regression equation that would optimally 

predict a particular phenomenon within a particular population. Here the goal is to use the equation to 

predict outcomes for individuals not in the sample used in the analysis.  

Also, to improve the accuracy in predicting values 
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Multiple Regression for Explanation: 

When one uses is for explanatory purposes to explore relationships between multiple variables in a sample to 

shed light on a phenomenon, with a goal of generalizing this new understanding to a population.  

A second use of multiple regression is to try to understand the functional relationships between the 

dependent and independent variables, to try to see what might be causing the variation in the dependent 

variable. 

Multiple regression is a statistical way to try to answer questions like "If all the other measured variable x2 to 

xn remained same, would regression variable y on variable x1 be significant?" 

Multiple Regression for Hypothesis testing in Model: 

It helps to test the main three hypothesis explaining the relationship in a model 

• The variation explained by the model is not due to chance. This is determined by F test. 

• That the slope of the regression line is significantly different than zero. This is determined by t test 

of the β parameter. 

• That the y intercept is significantly different than zero (t test of the constant parameter). This test 

result can be ignored unless there is some reason to believe that the y intercept should be zero 

Factors that can affect the result of Multiple Regression  

• These factors can provide incorrect result and inference, hence these are to be checked and removed 

before modelling data 

Nature of Dependent Variable 

• Multiple regression analysis is used when one is interested in predicting a continuous 

dependent variable from a number of independent variables. If dependent variable is 

dichotomous, then logistic regression should be used. 

• If the split between the two levels of the dependent variable is close to 50-50, then both logistic and 

linear regression will end up giving you similar results. 

• The independent variables used in regression can be either continuous or dichotomous. Independent 

variables with more than two levels can also be used in regression analyses, but they first must be 

converted into variables that have only two levels, called Dummy Coding 

• One point to keep in mind with regression analysis is that causal relationships among the variables 

cannot be determined. While the terminology is such that we say that X "predicts" Y, we cannot say 

that X "causes" Y. 

• Error in status of Independence state of the variable leads to theoretical conclusions, inflated 

standard errors 

Multicollinearity 

• In practice, the problem of multicollinearity occurs when some of the x variables are highly 

correlated. It can have significant impact on the quality and stability of the model by leading to  
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i. Unstable partial regression coefficients which won’t hold up when applied to a new sample 

of cases.  

ii. Their shared variance with the dependent or criterion variable may be redundant. 

Regression weights that don’t really reflect the independent contribution to prediction of 

each of the predictors 

iii. Independent Variable that has more than a .3 correlation with the dependent variable 

and less than .7 with any other Independent variable can be possible multicollinear 

predictor. 

• There are two ways to detect multicollinearity  

i. The presence of multicollinearity can be detected by examining the correlation matrix (say r= 

 0.9 and above). 

ii. Check - the correlation matrix, if there is are large correlations between pairs of explanatory 

variables.  

iii. ‘Tolerance’ associated with a predictor. The tolerance of Xi is defined as 1 – R2 correlation 

between that xi and the remaining x variables.  

iv. Tolerance = 1– R2 

v. The inverse of the tolerance is called the variance inflation factor (VIF). 1/tolerance 

vi. The higher VIF, the greater the multicollinearity. When there is no multicollinearity the 

value of VIF equals 1.   

vii. Multicollinearity problems have to be dealt with (by getting rid of redundant predictor 

variables or other means) if VIF approaches 10 (means 10% of the variance in the predictor is 

not explained by the combination of the other predictors) 

viii. Lesser the VIF, better is the model.  

 

Error in Collinearity to inflated standard errors 

Singularity 
 

• Singularity exists when there is perfect correlation between explanatory variables. The 

presence of either affect the interpretation of the explanatory variables effect on the 

response variable.  

Endogeneity 
 

• Regression measures the effect of changes in the independent variable on the dependent variable.  

Endogeneity occurs when that relationship is either backwards or circular, meaning that changes 

in the dependent variable cause changes in the independent variable. This circular relationship, if 

it is strong, can bias the results of the regression. Try to remove endogenous variables. There are 

strategies for reducing the bias if removing the endogenous variable is not an option. 

• In the home value example, perceived quality of the local schools might affect home values.  But the 

perceived quality is likely also related to the actual quality, and the actual quality is at least 

partially a result of funding levels.  Funding levels are often related to the property tax base, or the 

value of local homes.  So… good schools increase home values, but high home values also improve 

schools.  This circular relationship 
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Semi partial (Part) Correlation 

• Partial and semi partial correlations provide another means of assessing the relative “importance” 

of independent variables in determining Y. Basically, they show how much each variable uniquely 

contributes to R2 over and above that which can be accounted for by the other IVs. 

• Semi partial correlations (also called part correlations) indicate the “unique” contribution of an 

independent variable. Specifically, the squared semi partial correlation for a variable tells us how 

much R2 will decrease if that variable is removed from the regression equation.  

• To get Xk’s unique contribution to R2, first regress Y on all the X’s. Then regress Y on all the X’s 

except Xk. The difference between the R2 values is the squared semi partial. Alternatively, the 

standardized coefficients and the Tolerances can be used to compute the semi partials and squared 

semi partials. The more “tolerant” a variable is (i.e. the less highly correlated it is with the other 

IVs), the greater its unique contribution to R2 will be. This is generally used in Step Regression 

Partial Correlation 

• The partial correlation coefficient can be viewed as an adjustment of the simple correlation taking 

into account the effect of a control variable: r(X ; Y / Z ) i.e. correlation between X and Y 

controlled for Z.  

• Partial Correlation gives the influence of one Independent Variable over Dependent Variable 

when some variables are held as constant while examining the relations between X and Y. With 

assignment we can do this by design. If we regress variable X on variable Z, then subtract X' from X, 

we have a residual e. This e will be uncorrelated with Z, so any correlation X shares with another 

variable Y cannot be due to Z. 

• Partial correlation analysis is aimed at finding correlation between two variables after removing 

the effects of other variables. This type of analysis helps spot spurious correlations (i.e. 

correlations explained by the effect of other variables) as well as to reveal hidden correlations - i.e 

correlations masked by the effect of other variables. 

• The central concept in partial correlation analysis is the partial correlation coefficient rxy.z between 

variables x and y , adjusted for a third variable z . Both x and y are presumed to be linearly related 

to z : 

•  

x = Az + B + dx; 

 

y = Cz + D + dy; 

 

 

•  

 

• The partial correlation coefficient rxy.z is defined as the correlation 

coefficient between residuals dx and dy in this model.  

• The partial correlation coefficient rxy.z between x and y adjusted for z may be computed from the 

pairwise values of the correlation between variables x , y , and z (rxy, ryz, rxz) : 

 

 

• rxy.z = •  
• rxy  rxz ryz/Square Root((1 rxz

2)(1 ryz
2)) 

 

• The rxy.z takes on values between -1 and 1. 

• Another way of denoting Partial correlation is For example r12.34 is the correlation of variables 1 and 

2, controlling for variables 3 and 4. Partial correlation r12.34  

http://www.statistics.com/index.php?page=glossary&term_id=309
http://www.statistics.com/index.php?page=glossary&term_id=309
http://www.statistics.com/index.php?page=glossary&term_id=407
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How to Measure degree of Relationship: 

The computations are more complex, however, because the interrelationships among all the variables must 

be taken into account in the weights assigned to the variables.  

Things get much more complicated when your multiple independent variables are related to with each other. 

In other words, when the independent variables “interact” with each other as well as with the dependent 

variable. In this case, in order to be able to make predictions you need to break all of the correlations down 

so that you can figure out the value of multiple R. 

In multiple regression analysis, the end goal is to find the nature of the relationship itself between 

the dependent variable and the independent variable called Predictor Variables 

The analysis consists of choosing and fitting an appropriate model, done by the method of least squares, with 

a view to exploiting the relationship between the variables to help estimate the expected response for a 

given value of the independent variable.  

For example, if we are interested in the effect of age on height, then by fitting a regression line, we 

can predict the height for a given age. 

A linear regression equation is usually written 

Y  = m1*x1 + m2*x2 + m3*x3 + m4*x4 + mn*xn + b + e 

 

where 

Y is the dependent variable  

b is the intercept  

m1 is the slope or regression coefficient of variable x1 

x1 is the independent variable 

M2 is the slope or regression coefficient of variable x2 

x2 is the independent variable 

…… 

…… 

mn is the slope or regression coefficient of variable xn 

xn is the independent variable 

e is the error term 

 

The equation will specify the average magnitude of the expected change in Y given a change in x1 to xn. 

The regression equation is often represented on a scatterplot by a regression line. 

 

Linear regression quantifies goodness of fit with r2, sometimes shown in uppercase as R2.  If you put the same 

data into correlation, the square of r from correlation will equal r2 from regression.  

 

Word of Caution: Observations are independent and the depended variable Y should be random. The 

depended variables (response) should be normally distributed.  

 

Multiple regression is "dependence technique', it is required to specify the dependent and independent 

variables. Extra care in selecting the depended and independent variable. The dependent Variable should be 

a metric or continuous variable for linear regression. If your Dependent Variable is categorical such 1 = low, 2 

= average and 3 = high, then a different regression method called Logistic Regression should be used for 

categorical variable.  

 

https://explorable.com/research-variables
https://explorable.com/prediction-in-research
http://www.stats.gla.ac.uk/steps/glossary/paired_data.html#regline
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Example  

Purpose to determine the relationship  

To determine relationship between years in schools, motivation and earning.  

Independent Variable 1 
(X1) Independent Variable 2 Dependent Variable (X2) 

Dependent Variable (X2) 
(Y) 

Years in School 
Motivation as measured by Higgins Motivation 
Scale Annual Sales in Dollars  

12 32 $350,000  

14 35 $399,765  

15 45 $429,000  

16 50 $435,000  

18 65 $433,000  
Correlation School and 
Motivation 0.968  (rx1,x2)  

 
 

 Correlation School and 
Sales 0.880 (rx1,y) 

Correlation Sales and 
Motivation 0.772  (rx2,y) 

R = Sqrt(8762), R=0.9360 

Same result can be obtained by using Data Analysis -> Regression. Multiple R value is used here.  

 

Making Predictions:  

 

Y’ = a + b1X1+ b2X2  

Y’ = A predicted value of Y (which is your dependent variable)  

a = The “Y Intercept” 

b1 = The change in Y for each 1 increment change in X1 (In our case, this is Highest Year of School) 

b2 = The change in Y for each 1 increment change in X2 (In our case, this is Motivation)  

X = an X score (X is your Independent Variable) for which you are trying to predict a value of Y) 



Multiple Regression  
 

11  

 

   

Easier Still, the co-efficeints column in Regression output give us the Intercept and b1, b2, etc 

  

  Coefficients 

Intercept 56200.49309 

Years in School  (b1) 34108.62442 

Motivation (b2) -3490.679724 

 

Make a Prediction for potential salesperson with 13 years of education 49 on Motivation.  How much money in sales 

this person would bring in on an annual basis?  

Years in School = 13, Motivation = 49 

Y’ = a + b1X1 + b2X2  

= 56200.49309 + 34108.62442*13  + -3490.679724*49 = 328569.3041 

The appropriateness of the multiple regression model as a whole can be tested by the F-test in the 

ANOVA table. A significant F indicates a linear relationship between Y and at least one of the X's. 

Once a multiple regression equation has been constructed, one can check how good it is (in terms of predictive 

ability) by examining the coefficient of determination (R2). R2 always lies between 0 and 1. 

R2 - coefficient of determination 

All software provides it whenever regression procedure is run. The closer R2 is to 1, the better is the model and its 

prediction. We need to take care of the assumptions.   

• We need to check if the independent variables individually influence the dependent variable significantly 

by t-test.  

• If the t-test of a regression coefficient is significant, it indicates that the variable is in question 

influences Y significantly while controlling for other independent explanatory variables. 

https://explorable.com/anova
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• Nonexistence of multicollinearity- the independent variables are not related among themselves. At a 
very basic level, this can be tested by computing the correlation coefficient between each pair of 
independent variables. 

• The independent variables that statistically significant are indicated by  

o calculated t-statistics that exceed the critical values, and  

o the calculated p-values that are less than the significance level of 5%. 
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How to Calculate Multiple Regression: 

There are three ways to calculate r in Excel 

• Using the formulae  

i. LINEST – Syntax(List of variables for known y, List of variable for known x, optional value for 

stats and optional value for b - const) 

• Select g+1 cells where g is number of independent variables.  

• Type LINEST and Select the ranges and then press Ctrl+Shift+Enter 

• The last value is the intercept b, and the other values from 1 to g are the slope for 

variable x1 to xn  

• Replace them in the formulae Y  = m1*x1 + m2*x2 + m3*x3 + m4*x4 + mn*xn + b + e 

• to find out value of Y 

•  If n is the number of data points and const = TRUE or omitted, then v1 = n – df – 1 

and v2 = df. (If const = FALSE, then v1 = n – df and v2 = df.)  

 

• Using Statistical Tool in Excel 

i. Under the Tab “DATA”, click on the Option, “Data Analysis” 

ii. Click on Regression 

iii. Select the range in Input for X and Y, Output and confident level 

iv. Results are in two boxes 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUMMARY 
OUTPUT  

 

Regression Statistics Explanation 

Multiple R 0.998373 Correlation Coefficient 

R Square 0.996748 

Coefficient of Determination – Sq of R.  
Look at Result fits, rational for the model, & 
P values for interpretation 

Adjusted R 
Square 0.99458 

The adjusted R2"penalizes" you for adding 
the extra predictor variables that don't 
improve the existing model. 

Standard Error 970.5785 

Standard Error calculated on Residue. a 
measure of the statistical accuracy of an 
estimate 

Observations 11 No of Samples 
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v. Summary Output 

• Multiple R:   It is sqrt of R2, which is noted by correlation between 0 and 1, and closer 

to 1 indicates stronger relation. It won’t be negative. 

 

• R Square: The term R-squared refers to the fraction of variance explained by a 

model. A low R square doesn’t negate a significant predictor or change the meaning of 

its coefficient. Look at Result fits, rational for the model, & P values for 

interpretation 

Adjusted R square: The adjusted R2"penalizes" you for adding the extra predictor 

variables that don't improve the existing model. It is always lower than the R-

squared. Select the model with variables giving higher Adjusted R2 

 

• Standard Error: a measure of the statistical accuracy of an estimate, equal to the 

standard deviation of the theoretical distribution of a large population of such 

estimates. SQRT(RSS/(T – 2)) where T is the sample size. We reduce 2 from the 

sample size to account for the loss of two degrees of freedom, one for the regression 

estimate itself, and the second for the explanatory variable. 

 

 
 

vi. M1 (slope is indicated in Coefficient X1 to Xn, and intercept b is 52317) 

vii. So our regression equation is Y = 27.67(X1)+12529(x2)+2553(x3)+(-234(x4))+52317 

viii. Adjusted R square gives idea of the goodness of fit measure, here it says 99.4% of Y is 

determined by X 

ix. If Significance F should be lesser than 0.05. If is greater than 0.05, it's probably better to 

stop using this set of independent variables. Delete a variable with a high P-value (greater 

than 0.05) and rerun the regression until Significance F drops below 0.05. 

x. Most or all P-values should be below 0.05. 

xi. T-stat: use sample data to test hypotheses about an unknown population mean. the t-

statistic is a ratio of the departure of an estimated parameter from its notional value and 

its standard error. 

xii. Evaluating the Fitness of the Model Using Confidence Intervals – Lower and Upper 95%, it 

indicates the upper and lower bound within which 95% of the data exists.  

 

• Word of caution, when you use a regression equation, do not use values for the independent variable 

that are outside the range of values used to create the equation. That is called extrapolation, and it 

can produce unreasonable estimates.  

 

Do not use Slope and intercept formulae or use Correl and RSQ method for each component and 

replace them in the equation.  

ANOVA

df SS MS F Significance F

Regression 4 1732393319 433098329.8 459.753674 1.37231E-07

Residual 6 5652135.316 942022.5527

Total 10 1738045455

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 52317.83051 12237.3616 4.275254112 0.00523279 22374.08537 82261.5756 22374.0854 82261.5756

Floor space (x1) 27.64138737 5.429374042 5.0910818 0.00224096 14.35618768 40.9265871 14.3561877 40.9265871

Offices (x2) 12529.76817 400.0668382 31.31918712 7.0386E-08 11550.83988 13508.6965 11550.8399 13508.6965

Entrances (x3) 2553.21066 530.6691519 4.811304089 0.00296628 1254.710023 3851.7113 1254.71002 3851.7113

Age (x4) -234.237164 13.26801148 -17.6542781 2.1206E-06 -266.702819 -201.77151 -266.70282 -201.77151
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Excel restricts the number of regressors up to 16 and all the regressor variables be in adjoining 

columns.  

 

Creating a Model  

Multiple Regression with Scenario and Hypothesis testing and Interpretation from table 

Goals  

• To minimize the sum of the squares of the errors between variable 

• To understand the influence of each variable on one another and to whole system  

• To model and predict 

• Example: A researcher is attempting to create a model that accurately predicts the total annual power 

consumption of companies within a specific industry. The researcher has collected information from 21 

companies that specialize in a single industry. The four pieces of information collected from each of the 21 

companies are as follows: It is easy to mark out the non-relevant ones in the data collected 

1) The company’s total power consumption last year in kilowatts. 

2) The company’s total number of production machines. 

3) The company’s number of new employees added in the last five years. 

4) The company’s total increase in salary paid over the last five years. 

Check for Potential Problems with linear regression which needs to be avoided 

• Some of our assumptions may be violated 

• Non-linearity of the response-predictor relationships 

• Correlation of error terms 

• Non-constant variance of error terms (Heteroskedasticity) 

• Outliers 

• High-leverage points 

• Collinearity 

 

Step 0 – Variables  

Is at least one of the predictors X1, X2, … , Xp useful in predicting the response?  

The appropriateness of the multiple regression model as a whole can be tested by the F-test in the 

ANOVA table. A significant F indicates a linear relationship between Y and at least one of the X's. 

F Test  
An F test is used to determine if the relationship can be generalized to the population represented by the 

sample.  

Another method of determining the best model for prediction is to test the significance of adding one or 

more variables to the model using the partial F-test. In general, the partial F-test is similar to the F-

test used in analysis of variance. It assesses the statistical significance of the difference between values 

for R2 derived from 2 or more prediction models using a subset of the variables from the original equation. 

Significant F 
 

There is also a significance level for the model as a whole. This measures the likelihood that the model 

as a whole describes a relationship that emerged at random, rather than a real relationship.   

https://explorable.com/anova
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• The lower the significance F value, the greater the chance that the relationships in the model are 

real.  

 

• This indicates the probability that the Regression output could have been obtained by chance. A small 

Significance of F confirms the validity of the Regression output. For example, if Significance of F = 

0.030, there is only a 3% chance that the Regression output was merely a chance occurrence. 

This tests the full model against a model with no variables and with the estimate of the dependent 

variable being the mean of the values of the dependent variable. 

Significance F gives us the probability at which the F statistic becomes ‘critical’, ie below which the 

regression is no longer ‘significant’.  

This is calculated (as explained in the text above) as =FDIST(F-statistic, 1, T-2), where T is the sample 

size. In this case, =FDIST(9.126559714795,1,8) = 0.0165338014602297 

If F has a value of 0.01000 then there is 1 chance in 100 that all of the regression parameters are 

zero.  This low a value would imply that at least some of the regression parameters are nonzero and that 

the regression equation does have some validity in fitting the data (i.e. the independent variables are not 

purely random with respect to the dependent variable 

F Value or Ratio 
 

The F Value or F ratio is the test used to decide whether the model as a whole has statistically 

significant predictive capability. F value tests the full model against a model with no variables and with 

the estimate of the dependent variable being the mean of the values of the dependent variable.  It is a 

part of Test statics and F Test 

 
Under the null hypothesis that the model has no predictive capability, which means that all the results 

are purely due to chance and they cannot be predicted. The null hypothesis is rejected if the F ratio is 

large. High F ratio or Value means predictions can be done.  

 

F ratio tests whether the regression SS is big enough, considering the number of variables needed to 

achieve it.  Its value will range from zero to an arbitrarily large number. 

 

• The F value =  mean regression sum of squares/ mean error sum of squares.   

 
Larger an F-value indicates a consistent pattern that is unlikely due to chance. It also indicates that the 

model is robust and has significant effect (the denominator which has error is lesser). The simple rule in 

most research situations is: the higher the F value, the better… 

 
 

• F = Effect Variance (or “Treatment Variance”) /  Error Variance Or,  

• F = Between-group Variance /  Within-group Variance 

• F = Explained Variance / Unexplained Variance 

 
F value is used with p value for interpretation.  
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• Larger R2 produce bigger values of F. That is, the stronger the relationship is between the DV and the IVs, 

the bigger F will be. 

 

• Larger sample sizes also tend to produce bigger values of F. The larger the sample, the less uncertainty 

there is whether population parameters actually differ from 0. Conversely, in a small sample, even large 

effects may not be statistically significant.  

 

If additional variables do not produce large enough increases in R2, then putting them in the model can 

actually decrease F. It may be difficult to detect important effects. The F statistic does not tell you 

which effects are significant, only that at least one of them is. FR could be also used to compare two 

models describing the same experimental data: the higher FR the more adequate the corresponding 

model.  

 

 A very large F-value means that the between-group variance (the effect variance) exceeds the within-

group variance (the error variance) by a substantial amount. In such cases p-value then just gives a 

number to how likely a particular F-value is going to occur, with lower p-values indicating that the 

probability of obtaining that particular F-value is pretty low. This is actually why the degrees of freedom 

influence the F distribution.  

We will cover more of this when we create model and interpret results. 

 

F-Critical Value  
 

First, use the Critical Significance Level (α: alpha) chosen in Step 2 and the between treatment (df1= 

number of treatments – 1) and within treatment (df2= total sample size – number of treatments) degrees 

of freedom calculated in Step 3 to find the Critical Value of F (Fcritical) using a Critical Value Table such as 

the one below e.g., if α = 0.05, df1 = 2 and df2 = 12 then Fcritical = 5.096. 

Table of Critical Values for a Critical Significance Level (α: alpha) = 0.05 for the F statistic where df1 is 

the degrees of freedom between treatments (the numerator; the number of treatments - 1) and df2 is the 

degrees of freedom within treatments (the denominator; the total sample size – number of treatments) 

for Anova.  

• F-critical value is the F value above which 100% of the null sampling distribution occurs. This type 

of logic is used in many other types of statistical tests, which compare averages and other 

measures, instead of variances. 

 

Note that this value can be obtained from a computer before the experiment is run, as long as we 

know how many subjects will be studied and how many levels the explanatory variable has. Then 

when the experiment is run, we can calculate the observed F-statistic and compare it to F-

critical. If the statistic is smaller than the critical value, we retain the null hypothesis because 

the p-value must be bigger than alpha, and if the statistic is equal to or bigger than the critical 

value, we reject the null hypothesis because the p-value must be equal to or smaller than alpha 

 

If Fcalculated > Fcritical, H0 is rejected. 

If Fcalculated < Fcritical, H0 cannot be rejected. 

 

• Compare your f-value with your f-critical value. If the f-critical value is smaller than the f-value, 

you should reject the null hypothesis. 

• Please refer to F Critical Table 

sS%20List%20of%20Tables%20for%20Statistics.docx#FCriticalTable
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Do all the predictors help to explain Y, or is only a subset of the predictors useful?  

We need to examine the interaction between the predictor variables with respect to prediction. Only the 

variables that matters should be selected. Views differ as how this should be accomplished.  

One school, hierarchical regression - argues that theory should drive the statistical model and that the 

decision of what and when terms enter the regression model should be determined by theoretical concerns.  

Interaction terms – hierarchical principle 

The additive assumption may not hold because we may have synergistic effects also known as 

interaction effects. To relax the additive assumption, we include interaction terms like 𝑋1𝑋2. 

The hierarchical principle states that if we include an interaction in a model, we should also include 

the main effects, even if the p-values associated with their coefficients are not significant. 

In other words, if the interaction between X1 and X2 seems important, then we should include both 

X1 and X2 in the model even if their coefficient estimates have large p-values 

Interaction applies also  

• to qualitative variables 

• to a combination of quantitative and qualitative variables. 
 

Second school - stepwise regression, argues that the data can speak for themselves and allows the 

procedure to select predictor variables to enter the regression equation. 

Stepwise Regression 

These are –  

Step Up or Forward Selection 

• Start with the Null model. 

• Fit p simple linear regressions and add to the null model the variable that results in the lowest 

RSS. 

• Then add to that model the variable that results in the lowest RSS for the new two-variable 

model.  

• This approach is continued until some stopping rule is satisfied. 

Step Down or Backward Regression 

• We start with all variables in the model,  

• Remove the variable with the largest p-value — that is, the variable that is the least 

statistically significant.  

• The new (p − 1)-variable model is fit, and the variable with the largest p-value is removed. This 

procedure continues until a stopping rule is reached.  

• For instance, we may stop when all remaining variables have a p-value below some threshold. 

Mixed Selection  

• This is a combination of forward and backward selection.  

• We start with no variables in the model,  

• As with forward selection, we add the variable that provides the best fit.  

• We continue to add variables one-by-one.  

• Of course, as we noted with the Advertising example, the p-values for variables can become 

larger as new predictors are added to the model.  

• Hence, if at any point the p-value for one of the variables in the model rises above a certain 

threshold, then we remove that variable from the model.  
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• We continue to perform these forward and backward steps until all variables in the model 

have a sufficiently low p-value, and all variables outside the model would have a large p-value 

if added to the model. 

Null model 

• A model that contains an intercept but no predictors 

 

• How well does the model fit the data? (how strong is the relationship) → RSE, 𝑹𝟐 

• Given a set of predictor values, what response value should we predict, and how accurate is our prediction? 

Step 1 - Ascertain the Equation is Linear 
 

We have already gone through the requirement for an equation to be linear: The relationship between the predictors 

and response are additive which means the effect of changes in a predictor 𝑋𝑗 on the response Y is independent of the 

values of the other predictors.  

• The linear assumption states that the change in the response Y due to a one-unit change in 𝑋𝑗 is constant, 

regardless of the value of 𝑋𝑗. 

• The outcome Y takes on continuous values 

• Use Scatter plots to determine if the equation is linear or not and check direction, form and strength of the 

relationship 

• The model will remain linear if it is linear in the parament vector β, even if one of the regressors can be a non-

linear to another regressor  

Model Dep.  Ind.  Coefficient Interpretations 

Linear Y X 
 

Constant slope 

Quadratic Y X, X2 
 

Slope changes with X 

Log-Linear Ln Y Ln X 
 

Slope is elasticity 

Exponential Ln Y X Growth Model % Change in Y from an absolute 

change in X 

Semi-log Y Ln X % Change in 

Money supply 

Absolute change in mean of Y 

from % change in X 



Multiple Regression  
 

20  

 

effects on GNP 

by $ 

 

The relationship is said to be linear when:  

• The relationship between the predictors and response are additive which means the effect of changes in a 

predictor 𝑋𝑗 on the response Y is independent of the values of the other predictors.  

• The linear assumption states that the change in the response Y due to a one-unit change in 𝑋𝑗 is constant, 

regardless of the value of 𝑋𝑗. 

• The outcome Y takes on continuous values 

• Use Scatter plots to determine if the equation is linear or not and check direction, form and strength of the 

relationship 

Direction 

▪ Positive gradient:  When the larger values of the horizontal (explanatory) variable are 

associated with larger values of the vertical (response) variable. 

▪ Negative gradient:  When the larger values of the explanatory variable are associated with 

smaller values of the response variable. As the explanatory variable increases, the response 

variable decreases.  

 

Form 

▪ Linear or Non Linear. The relationship might be linear or curved or there might be no 

underlying form. In this course we will mainly concentrate on linear relationships, but we 

must be aware of the existence of non-linear ones.  
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Strength  

▪ They are the correlation term we use, like weak, strong, moderate.  

 

Lurking Variable 

▪ If non-linear trends are visible in the relationship between an explanatory and dependent 

variable, there may be other influential variables to consider. A lurking variable exists when 

the relationship between two variables is significantly affected by the presence of a third 

variable which has not been included in the modeling effort. Since such a variable might be 

a factor of time (for example, the effect of political or economic cycles), a time series plot of 

the data is often a useful tool in identifying the presence of lurking variables.  

 

Data not to be Extrapolated 

▪ Do Not Extrapolate Regression Beyond Existing Data 

▪ The major purpose of linear regression is to create a Regression Equation that accurately 

predicts a Y value based on a new set of independent, explanatory X values. The new set 
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of X values should not contain any X values that are outside of the range of the X values 

used to create the original regression equation. The following simple example illustrates 

why a Regression Equation should not be extrapolated beyond the original X values. 

 

Error in Linearity will lead to model misspecification 

 

Step 2 - Data is Normally distributed  

o Normality: in the population, the data on the dependent variable are normally distributed for each 

of the possible combinations of the level of the X variables; each of the variables is normally 

distributed 

▪ This can be tested by: Eyeballing data in histogram 

 

▪ Construct a normal probability plot, Q plot. In this plot, the actual scores are ranked and 

sorted, and an expected normal value is computed and compared with an actual normal value 

for each case. The actual values lining up along the diagonal that goes from lower left to 

upper right. This plot also shows that age is normally distributed: 

 

▪ By looking at a plot of the "residuals." Residuals are the difference between obtained and 

predicted DV scores. If the data are normally distributed, then residuals should be normally 

distributed around each predicted DV score that is the majority of residuals is at the center 

of the plot for each value of the predicted score, with some residuals trailing off 

symmetrically from the center. Residual plot is recommended before graphing each variable 
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separately because if this residuals plot looks good, then separate plots is not needed. Below 

is a residual plot of a regression where age of patient and time (in months since diagnosis) 

are used to predict breast tumor size. These data are not perfectly normally distributed in 

that the residuals about the zero line appear slightly more spread out than those below the 

zero line. Nevertheless, they do appear to be fairly normally distributed. 

▪ Normality test can be done using Shapiro-Wilk Original Test for dataset 5000 

▪ But since we may have more data than 5000, we would use Extended Shapiro‐Wilks test  

• Rearrange the data in ascending order so that x1 ≤ … ≤ xn. 

• Define the values m1, …, mn by mi = NORMSINV((i − .375)/(n + .25)) 

•  Let M = [mi] be the n × 1 column vector whose elements are these mi and let 

•  

• If M is represented by the n × 1 range R1 in Excel, then =SUMSQ(R1) calculates the 

value m. 

• Set u = 1/  and define the coefficients a1, …, an  where 

•  

•  

• ai = mi /  for 2 < i < n − 1 

• a2 = −an-1        a1 = −an 

• where 

 

• It turns out that ai = −an-i+1  for all i and that 

•  

• where A = [ai] is the n × 1 column vector whose elements are the ai. 

• 5. The W statistic is now defined by 

•  

• Because of the above properties of the coefficients a1, …, an it turns out that W = 

the square of the correlation coefficient between a1, …, an and x1, …, xn. Thus the 

values of W are always between 0 and 1. 

• It also turns out that for values of n between 12 and 5,000 the statistic ln (1−W) is 

approximately normally distributed with the following mean and standard deviation: 

•  

•  

• 6. Thus we can test the statistic 

•  

• using the standard normal distribution. If the p-value ≤ α then we reject the null 

hypothesis that the original data is normally distributed. 

▪   

 

http://www.real-statistics.com/wp-content/uploads/2013/02/image3598.png
http://www.real-statistics.com/wp-content/uploads/2013/02/image3598.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8101.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8102.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8103.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8104.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8105.png
http://www.real-statistics.com/wp-content/uploads/2013/08/wilks-w.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8107.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8108.png
http://www.real-statistics.com/wp-content/uploads/2013/08/image8109.png


Multiple Regression  
 

24  

 

 

Error in Normality or Normality bias leads to incorrect probability coverage 

Step 3 - Homoscedasticity is exhibited.  

▪ Homoscedasticity means that the variance of errors is the same across all levels of the 

Independent Variables.  When the variance of errors differs at different values of the IV, 

heteroscedasticity is indicated. For multiple regression, homoscedasticity should be there. 

▪ Classic Definition of Homoscedasticity: In the population, the variances of the dependent 

variable for each of the possible combinations of the levels of the X variables are equal. 

 

 

 

 
▪ Residuals should be randomly scattered around 0 (the horizontal line) providing a relatively 

even distribution.  Heteroscedasticity is indicated when the residuals are not evenly 

scattered around the line such as a bow-tie or fan shape.   

▪ Possible tests for this are the Goldfeld-Quandt test when the error term either decreases or 

increases consistently as the value of the dependent variables increases as shown in the 

fan shaped plot or the Glejser tests for heteroscedasticity when the error term has small 

variances at central observations and larger variance at the extremes of the observations 

as in the bowtie shaped plot (Berry & Feldman, 1985).  In cases where skew is present in 

the Independent Variables, transformation of variables can reduce the 

heteroscedasticity.  Or Breusch‐Pagan test  

▪ The formal methods that we consider are all based on statistical tests of the following 

general null and alternative hypotheses 

• 𝐻0:  the error term is homoskedastic 

• 𝐻1:  the error term is heteroskedastic 
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▪ Breusch‐Pagan test: 

• Estimate the population regression model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+ 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖 

and obtain the residuals, 𝑒𝑖. 

• Square the residuals or 𝑒𝑖
2. 

• Estimate the population regression model 𝑒𝑖
2 = 𝛾0 + 𝛾1𝑥1𝑖 + 𝛾2𝑥2𝑖 +⋯+ 𝛾𝑘𝑥𝑘𝑖 + 𝜑 

• Perform an F-test for overall significance to see if the squared residuals are 

statistically related to any of the independent variables.  

▪  Park Test: 

• Run regression Yi = a + bXi + ei despite the heteroskedasticity problem (it can also 

be multivariate) 

• Obtain residuals (ei), square them (ei
2), and take their logs (ln ei

2) 

• Run a spurious regression: iii vXgge ++= lnln 10

2

 

• Do a hypothesis test on   1ĝ
  with H0: g1 = 0 

• Look at the results of the hypothesis test: 

• reject the null: you have heteroscedasticity, fail to reject the null: homoskedasticity, 

or        0

2ln gei =  which is a constant  

 

 

Non-linear relationships in Linear Model 

In some cases, the true relationship between the response and the predictors may be 

nonlinear. 

A simple extension is to use polynomial regression, here we include terms like 𝑋2 

note: 𝑌 = 𝛽0 + 𝛽1 × 𝑋1 + 𝛽2 × 𝑋1
2⏟

𝑋2

.  

This model is still linear in the base X1 and X2! 

Idea: Try out a lot of different models, each containing a different subset of the predictors, and then 

use appropriate statistics to select the best model. These include the AIC, AICc, BIC, Adjusted-R-

squared, 

The subsets of p variables are 𝟐𝒑 so we can’t try them all. Instead we have some systematic ways 

that we choose some models for consideration using Forward/Backward/Mixed/Null Selection 

• Forward Selection  

• Backward Selection 

• Mixed Selection 

Error in Homoscedasticity leads to model misspecification and inflated standard errors  

Step 4 – Data Check  

Number of Cases 

o When doing regression, the cases-to-Independent Variables (IVs) ratio should ideally be 20:1; that is 

20 cases for every IV in the model. The lowest your ratio should be is 5:1 (i.e., 5 cases for every IV in 

the model). 

Accuracy of Data 

o Check maximum and minimum to check if data is in range 
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Missing Data 

o If the missing data is not much, opt not to include those variables in analyses.  

o If only a few cases have any missing values, then you might want to delete those cases. 

o If removing leads to data being lost then replace the missing ones with average or trimmed average 

Remove Extreme Outliers 

o This is done to understand relationship border. The minimum border of the relationships will be the 

bivariate correlations of all possible predictor variables with the dependent measures. The maximum 

border will be a linear regression model with all possible predictor variables in the regression model. 

o This can be done by getting Sorting the Data or can be found by dividing the variable y/mean 

o As a "rule of thumb", an extreme value is considered to be an outlier if it is at least 1.5 interquartile 

ranges below the first quartile (Q1), or at least 1.5 interquartile ranges above the third quartile (Q3). 

o Calculation of Interquartile Range  

▪ Quartiles divide a rank-ordered data set into four equal parts. The values that divide each 

part are called the first, second, and third quartiles; and they are denoted by Q1, Q2, and 

Q3, respectively. Or It is defined as the difference between the largest and smallest values in 

the middle 50% of a set of data. 

▪ Q1 is the "middle" value in the first half of the rank-ordered data set. 

▪ Q2 is the median value in the set. 

▪ Q3 is the "middle" value in the second half of the rank-ordered data set. 

▪ The interquartile range is equal to Q3 minus Q1. 

▪ The implications of removing/retaining the outlier must be clearly stated (it is unethical to 

simply erase a data point because it is not in the mainstream pattern!). Reasons and 

justification for any action must be clearly enunciated. 

▪ If outlier were to be removed, we would have a data set with a high level of association. As it 

is, the outlier has a significant effect on the level of association. 

Identification and Impact of Influencer  

o  If a point lies far from the other data in the horizontal direction, it is known as an influential 

observation. The reason for this distinction is that these points have may have a significant impact on 

the slope of the regression line.  

o The impact is to be studied and Influencer are not to be removed 

 

Error due to outliers or outlier biased results in inflated standard errors 

Step 5 – Create a Correlation Matrix   

• The purpose of this step is to identify independent variables that are highly correlated which would cause an 

error called multicollinearity. 

• Multicollinearity does not reduce the overall predictive power of the model but it can cause the coefficients 

of the independent variables in the regression equation to change erratically when small changes are 

introduced to the regression inputs.  

• Multicollinearity can drastically reduce the validity of the individual predictors without affecting the overall 

reliability of the regression equation. 

• When highly correlated pairs of independent variables are found, one of the variables of the pair should be 

removed from the regression. The variable that should be removed is the one with the lowest correlation 

with the dependent variable, Y. 

http://stattrek.com/Help/Glossary.aspx?Target=Median
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• However, we cannot conclude that any of these correlations are important until we test for significance. 

calculating the test statistic for each of the pair-wise correlations above, we see that there are many 

statistically significant correlations (indicated in green), suggesting that multicollinearity may be a problem. 

• In the case of multicollinearity, we could either:  

o Increase the sample size (which will often reduce the correlation among the independent variables,  

o Re-specify the regression model, removing or restating the independent variables such that there is 

less correlation among them. 

• If no VIF > 5, then perform best subsets regression with all variables; List all models with Cp close to or less 

than (k + 1); Choose the best model; Consider parsimony ( Do extra variables make sense and make a 

significant contribution?); Perform complete analysis with chosen model, including residual analysis; check 

for linearity and violations of other assumptions 

• If one or more VIF > 5, remove them from the model; Re-estimate the new model with the remaining 

variables, and repeat this step. 

• Try all combinations and select the best using 

•  the highest adjusted r2 and lowest standard error, OR 

• The Cp Statistic 

2

2
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• Where    k = number of independent variables included in a particular regression model 

•  T = total number of parameters to be estimated in the  full regression model 

•   Rk
2 = coefficient of multiple determination for model with k independent variables 

•   RT
2 = coefficient of multiple determination for full model with all “T” estimated parameters 

• The best model are those with Cp values that are small and close to K+1. 

Step 6 – Create the Regression Equation from the data 

Step 7 – Calculate and Examine Appropriate Measure of Association & Tests of Statistical significant for 

each co-efficient and for the Equation as a whole 

Step 8 – Detection of Error   

Graphical  

The first approach must be graphical, glaring problems can easily be detected this way – This involves basic 

scatterplots, Density/QQ plots of residuals, residuals vs. fitted, influence plots, component‐residual plots etc. 

Detection of Error Statistical  

• Any normality test on the residuals (e.g. Shapiro‐Wilks) –  

• Breusch‐Pagan test for heteroscedasticity –  

• Durbin‐Watson for autocorrelation1 –  

• RESET test for linearity –  

• Many measures of outliers (Cook’s distance, dfBetas, Mahalanobis’ distance etc.) –  

• Variance Inflation Factor for collinearity 

Step 9 – Accept or Reject Null Hypothesis 

 Hypotheses can be one-tailed or two-tailed, e.g. H0: β1 = 0 or H0: β1 = 0 HA: β1 ≠ 0 HA: β1 > 0 The first is an 

example of a two-tailed alternative.  

• Sufficiently large positive or negative values of β1 will lead to rejection of the null hypothesis. The 

second is an example of a 1-tailed alternative. In this case, we will only reject the null hypothesis if β1 

is sufficiently large and positive.  

• If β1 is negative, we automatically know that the null hypothesis should not be rejected, and there is 

no need to even bother computing the values for the test statistics.  
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• You only reject the null hypothesis if the alternative is better. 

Step 10 – Accept or Reject the Research Hypothesis 

Step 11 – Explain the practical implication of the findings 

 

Foot Note: 
 

 

• Linearity: In the population, the relation between the dependent variable and the independent variable is 

linear when all the other independent variables are held constant. 

 

• Independence: The data of any particular subject are independent of the data of all other subjects 

 

• Random Variable: A random variable, usually written X, is a variable whose possible values are numerical 

outcomes of a random phenomenon. There are two types of random variables, discrete and continuous. 

 

 

• ANCOVA: Analysis of covariance. The method of ANCOVA allows the analyst to make comparisons between 

groups that are not comparable with respect to some important variable, often referred to as a covariate. 

This is done by making an adjustment based on fitting a particular kind of regression line. In addition to 

allowing for imbalances, the method removes variation due to the covariate and therefore provides a more 

precise analysis. A geometrical interpretation is that the 'unexplained variation' with respect to which the 

significances of group differences are ultimately assessed 

 

• The null hypothesis here is that there is not a general relationship between the response (dependent) 

variable and one or more of the predictor (independent) variables, and the alternative hypothesis is that 

there is one.  A big F, with a small p-value, means that the null hypothesis is discredited, and we would 

assert that there is a general relationship between the response and predictors (while a small F, with a big p-

value indicates that there is no relationship).  

 

 

 

• The null hypothesis here is that there is not a general relationship between the response (dependent) 

variable and one or more of the predictor (independent) variables, and the alternative hypothesis is that 

there is one.  A big F, with a small p-value, means that the null hypothesis is discredited, and we would 

assert that there is a general relationship between the response and predictors (while a small F, with a 

big p-value indicates that there is no relationship).  

 

•  

https://www3.nd.edu/~rwilliam/stats1/x93.pdf 

Multiple Classification Analysis 

• Multiple classification analysis: Multiple Classification Analysis (MCA) is a technique for examining the 
interrelationship between several predictor variables and one dependent variable in the context of an 
additive model Independent variables may be measured on nominal or ordinal scales and the dependent 
variable may be interval scale or a dichotomy. 

https://www3.nd.edu/~rwilliam/stats1/x93.pdf
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• Additive model: Such a model assumes that the dependent variable can be predicted from an additive 
combination of the independent (or predictor) variables. In other words, they assume that the average 
score on the dependent variable for a given set of individuals (objects or cases) is predictable by adding the 
effects of several predictors. 

  

• Eta: Eta indicates the ability of a predictor, using the given categories, to explain variation in the 
dependent variable. 

  

• Eta square: Eta2 is the correlation ratio and indicates the proportion of the total sum of squares, 
explained by the predictor. 

  

• MCA Beta: This is directly analogous to Eta statistic, but is based on the adjusted means rather than the 
raw means. Beta is a measure of the ability of a predictor to explain variation in the dependent variable, 
after adjusting for the effects of all other predictors. Note that this is not in terms of percentage of 
variance explained. 

• Multiple correlation coefficient squared: This coefficient indicates the proportion of variance explained 
in this run of the program. 

  

• Adjustment for degrees of freedom: This is the factor used to correct for capitalizing on chance in 
fitting the model in the particular sample being analyzed. 

  

• Multiple correlation coefficient squared (Adjusted): This coefficient estimates the proportion of 
variance in the dependent variable, explained by the predictor variables. 

 

 

https://www.riskprep.com/all-tutorials/36-exam-22/131-regression-analysis  

https://www.cgc.maricopa.edu/Academics/LearningCenter/Math/Documents/AnalyzingLinearRegress

ion.pdf  

http://chemistry.oregonstate.edu/courses/ch361-464/ch464/RegrssnFnl.pdf 

https://www.riskprep.com/all-tutorials/36-exam-22/131-regression-analysis  

http://go.owu.edu/~deswartz/210/text_notes/ch09.htm  
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