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Linear Model Building: 

Assumptions 

• All of linear Regression should be followed. A quick review of the assumptions 

Linearity  

We have already gone through the requirement for an equation to be linear:  

You can skip these if you remember the Assumptions 

• The relationship between the predictors and response are additive which means the 

effect of changes in a predictor 𝑋𝑗 on the response Y is independent of the values of the 

other predictors. 

• The linear assumption states that the change in the response Y due to a one-unit change 

in 𝑋𝑗 is constant, regardless of the value of 𝑋𝑗. 

• The outcome Y takes on continuous values 

• Use Scatter plots to determine if the equation is linear or not and check direction, 

form and strength of the relationship 

• A quick guide to determine if the equation is Linear 
 

Model Dep.  Ind.  Graph Interpretations 

Linear Y X 

 

Constant slope  

Quadratic Y X, X2 

 

Slope changes with X 

 

Log-Linear Ln Y Ln X 

 

Slope is elasticity 

 

Exponential Ln Y X 

 

% Change in Y from an 

absolute change in X 
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Power Y Log X 
 

% Change in Y from an 

absolute change in X 

where power is >1 

 

 

Non-linear relationships in Linear Model 

In some cases, the true relationship between the response and the predictors may be nonlinear. In 

such cases we transform the data 

How to Transform Non-linear Variables to Make It Linear 

• For the variables, complete regression analysis 

• Check if the residual plot is not random, then transform the data. Random residual 

means, linearity, so no transformation is required 

• From the residual plot see what kind of regression it is 

• Select the formula for transformation 

• Transform the variables 

• Complete regression analysis with new variables 

• Check the R2 with the previous regression model 

• If new R2 is better than old, the transformation is good.  

• Else check the model and continue with best fit 

 

 

 

 

An example: For this data set, the equation is Exponential.  

 

Model Regression Eq  Transformation Formula Predicted value (ŷ) 

Standard linear regression y’= y   NA ŷ = b0 + b1x 

Exponential model y’= log(y)   Dependent variable = log(y) ŷ = 10b
0
 + b

1
x 

Quadratic model y’= sqrt(y)   Dependent variable = sqrt(y) ŷ = ( b0 + b1x )2 

Reciprocal model y’= 1/y   Dependent variable = 1/y ŷ = 1 / ( b0 + b1x ) 

Logarithmic model y’= y= b0 + b1log(x)  Independent variable = log(x) ŷ = b0 + b1log(x) 

Power model y’= log(y)= b0 + b1log(x)  Dependent variable = log(y)  

Independent variable = log(x) 

ŷ = 10b
0
 + b

1
log(x) 

X Y 

1 9 

2 12 

3 15 

4 60 

5 102 

6 364 

7 820 
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The regression analysis shows R2 = 0.67 

The formulae to transform y is y’ = log(y) 

 

The regression analysis shows R2 = 0.95 

 

 
 

 

Homoscedasticity  

• Variables should be Homoscedasticity which means that the variance of errors is the same across all levels of 

the Independent Variables. When the variance of errors differs at different values of the IV, 

heteroscedasticity is indicated. 

• Classic Definition of Homoscedasticity: In the population, the variances of the dependent variable for each of 

the possible combinations of the levels of the X variables are equal. How  

How to Identify Homoscedasticity 

Residuals should be randomly scattered around 0 (the horizontal line) providing a relatively even 

distribution. Opposite is true for Heteroscedasticity where residuals are NOT evenly scattered around the 

line such as a bow-tie or fan shape.   

 

 

Hypothesis used:  

𝐻0:  the error term is homoscedastic 

𝐻1:  the error term is heteroskedastic 

X 
New Y 
y' = log(y)  

1 0.95 

2 1.08 

3 1.18 

4 1.78 

5 2.01 

6 2.56 

7 2.91 
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Breusch-Pagan-Godfrey 

▪ This test measures increase of errors across y, the explanatory variable. The assumption 

that this test takes in is: linear function of 1 or more explanatory variable causes the error 

in variance. (Example) 

▪ Complete the Regression for Y=mx+b+e  

▪ Plot all Residual 𝑒𝑖
2. 

▪ Find the variance of the regression residuals by squaring all residual, 𝑒𝑖 

▪ Summing them up and dividing it by number of observations 

▪ Now standardize the residual, by dividing each residue by the variance of the regression 

residue we obtained and then squaring it 

▪ si
2 = Square of Standardized Residuals. 

▪ Now run another regression with this si
2 

▪ Check SS of this new Regression 

▪ Divide the value by 2 for each tail of the hypothesis 

▪ This number is our χ2   

▪ List degree of freedom, d 

▪ Now check critical values of chi-square distribution with d degrees of freedom, for 

significance level 

▪ Reject the Hypothesis H0: The variances are equal (i.e., homoscedastic) if X2 > XCr 

▪ Goldfeld-Quandt 

▪ Sort the independent variable in ascending order 

▪ Remove the mid-range, dividing the set into two set A & B (if the data range is small – do 

not remove any data)   

▪ Run regression on A & B 

▪ Note ESS – Or Residue SS (Error Sum of Square) & Degree of Freedom (df) of the 

residues 

▪ Residue SS of B/Residue SS of A 

▪ Go to F Table of required significant level (95% usually) with the required degree of 

freedom (df of residue) 

▪ Reject the Hypothesis H0: The variances are equal (i.e., homoscedastic) if Fvalue > FCr 

White’s test 

▪ Complete the Regression for Y=mx+b+e  

▪ Plot all Residual 𝑒𝑖
2. 

▪ Find the variance of the regression residuals by squaring all residual, 𝑒𝑖 

▪ Summing them up and dividing it by number of observations 

▪ Now standardize the residual, by dividing each residue by the variance of the regression 

residue we obtained and then squaring it 

▪ si
2 = Square of Standardized Residuals. 

▪ Run another regression with this si
2 – lets name the R2 obtained as Rû2

2 

▪ n = sample size, df = degree of freedom 

▪ χ2 = nRû2
2 

▪ Now check critical values of chi-square distribution with d degrees of freedom, for 

significance level 

▪ Reject the Hypothesis H0: The variances are equal (i.e., homoscedastic) if X2 > XCr 

▪ Or Sum si
2 = Square of Standardized Residuals. 

▪ Create a Numerator in the table = Residue2 * si
2  

▪ Calculate Sum of this number  

▪ White Var(b) = Numberator/ (Sum si
2)2 

▪ Calculate square root of Var(b) 

▪ Check standard Error of the variable from Regression table 

file:///C:/Users/naseh/OneDrive/sS/articles%20and%20presentations/Statistics/sS%20Work%20Book%20Relation%20Data%20set.xlsb
file:///C:/Users/naseh/OneDrive/Studies/stats/f.pdf
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▪ Reject the Hypothesis H0: The variances are equal (i.e., homoscedastic) if sqrt(var(b) 

<> standard Error of the variable 

Park Test 

▪ Run regression Yi = a + bXi + ei despite the heteroskedasticity problem (it can also be 

multivariate) 

▪ Obtain residuals (ei), square them (ei
2), and take their logs (ln ei

2) 

▪ Run Regression with Natural Log of Residue as Y, and log of X as X 

▪ Check t ratio,  

▪ It is compared to a T distribution with (n-k) degrees of freedom where here n = 

observations and k = variables. 

▪ New Equation is Ln(new y2) = New m*(Ln Original X) + New b 

▪ Reject the Hypothesis H0: The variances are equal (i.e., homoscedastic) if t ratio is 

significant, i.e. t ratio > t crit 

Rectify the Heteroscedasticity  

WLS Method – Weighted Least Square 

Method 1 – When Variance is Known 

• Divide each observation by its std. dev.  

• Perform Regression again to get a new model.  

Method 2 – When Variance is Not known 

• Create a new Dependent variables – by dividing original dependent variable/Original 

independent variable 

• Get the new Independent variable by inversing the independent variable. 

• Inverse is nothing but inverse or reciprocal of a number which is obtained by 1/number or 

number -1 . Inverse of fraction x/y is y/x  

• Run Regression on new X and Y 

• Compare the previous model’s Y’s t ratio with New Y’s t ratio (Follow the label, position of the 

variables would interchange in both the models) 

• Stronger t ratio and lesser Standard Error indicates successful correction 

Logarithmic Transformation 

• Such transformation is used to correct Seasonal change in trends. 

• Quick Fix to this is 

• Log transformations is applied and then additive seasonal adjustment is performed to remove 

the seasonality effect 

o To get seasonal adjustment, find out the yearly average of the variable 

o Divide monthly data with this yearly variable to get the seasonal index 

o Add or subtract seasonal index to get seasonal adjusted data 

• Use seasonally adjusted variable instead of the original  

Box-Cox Transformation 

•  Box-Cox helps in transforming data to make a normal distribution, to remove the Left hand or 

right-hand skewness 

• It is a process to identify right or optimum exponent λ to transform data. 

• λ indicates the power to which all data should be raised.  

• Box-Cox power transformation searches from λ = -5 to +5 until the best value is found.  

• Formula: New Y or Y’ =(Yλ – 1) /  λ 
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• Y is the response variable and λ is the transformation parameter.  
 

l Y’ 

-2 Y’ = 1/Y2 

-1 Y’ = 1/Y1 

-0.5 Y’ = 1/(Sqrt(Y)) 

0 Y’ = log(Y) 

0.5 Y’ = Sqrt(Y) 

1 Y’ = Y 

2 Y’ 

• Since Box-Cox can be used only in positive number, we add 1–min to all the sample values to 

convert min to 1 and change the other numbers accordingly 

• Sort the data. That is your x. In excel you can also use the formula Small 

• Transform x to get y → IF(lambda=0,LN(new x),(New x^lambda-1)/lambda) 

• Get the probability Curve, each sequence of the number like 1, 2, 3, divided by max number.  

• Now calculate the inverse normal values, which is nothing but standardized Z value 

corresponding to 1-tailed Probability. The value here is between 0 to 1 

• The distribution has a mean of zero and a standard deviation of one. 

• Get Correlation R^2 from value y and new inverse normal number z,  

• Now we Goal Seek – Set the Value of the Cell which has Correlation value  

• Our Goal is Max R^2, which is 1. Set Target as 1 

• The cell that we will change is lambda 

• The lambda is the exponential that we would require to transform the data 

• Our new y is y^lambda that we got  

Weak Exogeneity  

• If a variable  is not affected by other variables in the model, it is exogenous variable. This variable could be 

affected by factors outside of the model. The regression model should show a weak exogeneity. These 

variables can be fixed variables, or given, or out of scope of the model, not determined or explained by the 

model or they can influence endogenous variables.  

• Endogenous varaibles will cause OLS (ordinary least squares) estimators to fail. As one of the prerequisite of 

OLS is - no correlation between an predictor variable and the error term.  

How to Identify Endogeniety 

• The Hausman Test  detects endogenous regressors. It is also known as a test for model misspecification, a 

model that does not account for every varaible that matters and may have biased coefficients, error, 

parameters etc.  

• Hausman test helps to identify between fixed effects model or a random effects model.  

• The null hypothesis - Preferred model is random effects, there is no correlation between the unique errors and 

regressors. 

• The alternate hypothesis - Model is fixed effects.  

Least Square Estimate 

• Use Regression analysis 

http://www.statisticshowto.com/variable/
http://www.statisticshowto.com/least-squares-regression-line/
http://www.statisticshowto.com/residual/
http://www.statisticshowto.com/endogenous-variable/
http://www.statisticshowto.com/fixed-effects/
http://www.statisticshowto.com/what-is-the-null-hypothesis/
http://www.statisticshowto.com/what-is-an-alternate-hypothesis/
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• Check for Significance F. If the value is less than 0.05, for 5%, the model is OK. If Significance F is greater than 

0.05, it's probably better to stop using this set of independent variables. Delete a variable with a high P-value 

(greater than 0.05) and rerun the regression until Significance F drops below 0.05. 

• Most or all P-values should be below below 0.05.  

Hausman test 

• Take the variable you think is endogenous (this is essentially X) as Y and all other explanatory variables as 

X and run regression 

• Take the residuals from the regression test above as an additional explanatory variable in the regression. 

• For 2nd regression, use usual Y as Y and the variables including the tested ones and the residue as X.   

• Check for t-scores for particular alpha levels. 

• Compare the alpha level (5% usually) to the p-value in the output. If the p-value in the output is smaller 

than the alpha level you chose, reject the null hypothesis. p-values to determine which terms to keep in 

the regression model.  

• Compare the t-critical value in the output with the t-value. If the t-value is smaller than the t-critical 

value, reject the null hypothesis.  

• If unsure between one-tailed test or a two-tailed test, go for two-tail t critical value. 

Independence of errors (AKA No Auto correlation) 

• Prerequisite of a regession model is that error terms are independent. A common violation of this 

assumption occurs when each error term is related to its immediate predecessor (εi is related to εi-1). 

• One of the Test is Breusch-Pagan test which we covered earlier 

• Another Test is Durbin-Watson statistic 

Durbin-Watson statistic 

• This test measures the correlation between the error term and the immediate predecessor.  

• The statistic D ranges from 0 to 4. If p is 0, the D value is 2, close the D value is to 2, more independent 

the errors terms are.  

• If p = 1, Durbin-Watson statistic = 0 

• Generally, values of d within 1.5 < d < 2.5 show that there is no auto-correlation in the multiple linear 

regression data. 

• To reject a hypothesis, d is calculated and checked with Durbin-Watson Table 

• d = sum of squared difference/sum sqare 

o if d > upper bound, fail to reject the null hypothesis of no serial correlation,   

o if d < lower bound, reject the null hypothesis and conclude that positive autocorrelation is 

present,   

o if lower bound < d < upper bound, the test is inconclusive. 

No Multi Collinearity  

Multicollinearity can impact on the quality and stability of the model by leading to  

• Unstable partial regression coefficients which won’t hold up when applied to a new sample of 

cases.  

• Their shared variance with the dependent or criterion variable may be redundant. Regression 

weights that don’t really reflect the independent contribution to prediction of each of the predictors 

http://www.statisticshowto.com/t-score-formula/
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• Independent Variable that has more than a .3 correlation with the dependent variable and less 

than .7 with any other Independent variable can be possible multicollinear predictor. 

Collinearity can be categorized into 3 kinds 

• Perfect Collinearity 

o It is the case when the one predictor can be predicted from either 1 or in some combination of 

1 or more predictors. These are generally error of commission. Like addition of average score 

in Science and total score in the model, when one is a subset of another. In such cases, most 

of the times regression will return an error 

• Almost Perfect Collinearity 

o The correaltion value r is very close to 1 though not 1.  In such cases the standard error would 

be very high 

• Multicollinearity 

o Multicollinearity is a state when independent variables are not independent and there exsists 

a relationship between them. It can cause high standard errors for the LSQ Estimation, leading 

to t-tests suggesting that the parameters are not significantly different from zero.  

Identifying Mulitcollinearity 

Multicollinearity identified in 4 ways: 

Quick and Easy Idications 

• High R2 but few significant t ratios. 

• F-test rejects the null hypothesis, but none of the individual t-tests are rejected. 

• Correlations between pairs of X variables are more than with Y variables. 

Variance Inflation Factor  

• Variance Inflation Factor (VIF) – VIF is inverse of Tolerance = 1/T. Tolerance is 1 – R2 

• VIF = 1/1-R2 

• VIF > 10 indicates presence of multicollinearity  

• VIF > 100 indicates a certainly of  multicollinearity  

Tolerance  

• Tolerance – is the measure of the influence of one independent variable on all other independent 

variables;  

• Tolerance T = 1 – R² of original regression.  

• T < 0.1 indicates multicollinearity  

• T < 0.01 indicates a certainty of multicolinearity 

Correlation matrix  

• Correlation coefficient that varies from 0 to 1, both in negative and positive scale need to < 1 and 

closer to 0 

• Closer the number is to 1, stronger is the relationship 

Condition Index  

• The condition index is calculated using a factor analysis on the independent variables.  Values of 

10-30 indicate a mediocre multicollinearity in the linear regression variables, values > 30 indicate 

strong multicollinearity. 
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Removing Multicolinearity 

• Easiest way to reduce multicollinearity is to ‘centering the data’ which is subtracting the mean 

from the independent variables.  

• Increasing the sample size  

• transform the highly correlated variables into a ratio 

o Usual method is using factor analysis or manual methods involve adding the related 

predictors together or averaging them or subtracting the predictors with some weights 

• Removing the variable that does look essential. Check the correlations between variables remove 

the variable that are highly correlated but after taking into account the importance of the 

variables.  

o Removal of variable might lead to The Omitted variables bias 

o If an explanatory variables that should be present in the regression is not taken into the 

model, then the estimated coefficients will be not accurate.  

o The omited variable might try to enter in the only way it can – through its positive 

correlation with the explanatory variable 

o The consequence of omitted variables bias is that all those explanatory variables that 

could affect the dependent variable should be included.  

What Regression Does  
 Regression takes a significant sample size from the population and estimates the relationship between the 

parameters. It  

• Identify and explanatory variables 

• Establish a relationship between dependent & explanatory variables 

Equation 

• Y = m1x1  + m2x2 + …. Mnxn +b + error 

 

Y = Dependent Response Variable 

m = Slope of the population 

x = Explanatory or Independent variable 

b = Y Intercept of the Population 

error = random error 

 

We know that the random errors are nothing but the difference between the observed and predicted 

values.  

 

b = mean value of the dependent variable Y, when the independent variable x = 0 

m = the change in the value of the dependent variable, Y, for unit change in the independent variable 

x. 

 

Y =  690 x Value of Gold + 1120 + error 

Here error = 0 

 

It means if x = o, then the value of Y = 1120 

690 is the change in value of Y for every unit change of x  

 



Creating Regression Model  
 

11  

 

Same loop continues for the number of variables n 

Goal of Regression is 
• To minimize the sum of the squares of the errors between variable 

• To understand the influence of each variable on one another and to whole system  

Method of Ordinary Least Squares (OLS) 

Unless the R2 is 100%, there will be some amount of variation in y which remains unexplained by x. The 

unexplained variation is the error component of the regression equation. That error is the sum of the 

differences between each observed value and its value as predicted by the regression equation. 

 

Regression Analysis, attempts to fit a line through a set of plotted points that minimizes the residuals to 

give us a line that is called line of best fit. This line is fit in such a way that the sum of the squared 

residuals is minimized. 

 

 

 

 

• There are two type of offsets to calculate the least distance.  

 

• In practice, the vertical offsets from a line (polynomial, surface, hyperplane, etc.) are almost always 

minimized instead of the perpendicular offsets. This provides a fitting function for the independent 

variable  that estimates  for a given  (most often what an experimenter wants), allows uncertainties 

of the data points along the - and -axes to be incorporated simply, and also provides a much simpler 

analytic form for the fitting parameters than would be obtained using a fit based on perpendicular 

offsets. 

 

• Ordinary least squares (OLS) is used to estimate the unknown parameters, with the goal of minimizing the 

sum of the squares of the differences actual and predicted values. Residual SS = sum of squares of the 

differences between the values of y predicted by equation and the actual values of y. In other words, 

it is derived from the cumulative addition of the square of each residual, where a residual is the distance 

of a data point above or below the fitted line 

 

http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
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Advantage of Ordinary Least Squares (OLS) 

When error terms are not correlated as prerequisite of a linear OLS are BLUE, “Best Linear Unbiased 

Estimates. They have  

• Estimation is Unbiased  

• Estimation has minimum variance 

• As sample size increases the sample intercept tends towards population intercept 

Check for Potential Problems with linear regression which needs to be avoided 

• Some of our assumptions may be violated 

• Non-linearity of the response-predictor relationships 

• Correlation of error terms 

• Non-constant variance of error terms (Heteroskedasticity) 

• Outliers 

• High-leverage points 

• Collinearity 

 

10

12

14

16

18

20

22

10 12 14 16 18 20 22 24 26 28

Sum of Sq of diff between Predicted & Actual y
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Validate Your Model  

 

Linear Relationship 

We have already covered Assumptions and how to test them.  

We have also ruled out autocorrelation in Durbin-Watson Test.  

In statistics, the t-statistic is a ratio of the departure of an estimated parameter from its notional value and 

its standard error. The only difference is that we have to estimate the population standard deviation, . 

Remember, if you know , then use the z-test; if you don’t know , then estimate  (find )  

 

• The t value is compared with Critical T for the degree of freedom to accept or reject a Hypothesis 

• If tcalc > tcritical, we reject the null hypothesis and accept the alternate hypothesis. Otherwise, we accept 

the null hypothesis. 

• H0 = There is no relationship between dependent and independent variable.  

Fitting the Model 

R Values - They indicate the accuracy of the equation 

Regression Statistics 

Multiple R 0.772426647 

R Square 0.596642925 

Adjusted R Square 0.589566485 

Standard Error 1.2109982 

Observations 59 

 

Universal Assumption

Linear 
Relationship

•The variable x & y have a relation that is linear

•Test used: t-test to validate relationship between independent and 
dependent variables

Objective is to minimize SSE

Fitting the 
Model

•Test : The Sum of Square of Error should be minimum for the equation 
y =  mx +b + E. Check Multiple R2

•Test: Co-efficient of determination. check R2

•Test: Analysis of Variance (ANOVA) and F test

Confirms 



Creating Regression Model  
 

14  

 

R2 

• It is also called the coefficient of multiple determination. It is the square of the co-efficient of 

correlation between y and x. R-squared value indicates the proportion of variation in the y-variable that 

is due to variation in the x-variables. 

• It ranges in value from 0 to 1. Closer to 1, indicates the percentage of variation in y that is due to x.  

• In the above example 59% of the variation in y is explained by x  

Multiple R   

• The correlation coefficient between the observed and predicted values. 

• It ranges in value from 0 to 1. A small value indicates that there is little or no linear relationship 

between the dependent variable and the independent variables. 

• "Multiple R" in the "Regression Statistics" is close to 1, then the least-square regression line indeed fits 

the data points pretty well, and there is a linear (positive or negative) relation between the two 

variables. 

• In above example, the model is fitted to 77% 

Adjusted R Square:  
 

• Adjusted R square: The Adjusted R2 is attempting to account for statistical shrinkage. The 'Adjusted R 

Square' is computed because the 'R Square' tends to somewhat over-estimate the success of the model 

when applied to the real world.  

• The adjusted R2"penalizes" you for adding the extra predictor variables that don't improve the 

existing model. It can be helpful in model selection. Adjusted R2 will equal R2 for one predictor variable. 

As you add variables, it will be smaller than R2.  

• R2 increases even when you add variables which are not related to the dependent variable, but adjusted 

R2 take care of that as it decreases whenever you add variables that are not related to the dependent 

variable.  

• Adjusted R square gives idea of the goodness of fit measure, here it says 58% of Y is determined by X 

Anova 

Avona details & Significance F - They indicate the probability that the output obtained was deliberate and was 

not a chanced occurrence 

ANOVA        

 Df SS MS F Significance F   
Regression 1 123.647878 123.647878 84.31399593 7.79023E-13   
Residual 57 83.59144844 1.466516639    
Total 58 207.2393264     

        

 Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% Lower 95.0% 

Intercept -2.22106586 0.542526978 
-

4.093927034 0.000135244 -3.307457394 
-

1.134674327 
-

3.307457394 

Income 0.000296533 3.22941E-05 9.182265294 7.79023E-13 0.000231865 0.000361201 0.000231865 

 

• Significance of F indicates the percentage the output was a chance occurrence. For example = 0.010, 

there is only a 1% chance that the Regression output was a chance occurrence. In this example 

0.00000000008% of the output is a chance occurrence. 

• If Significance F should be lesser than 0.05. If is greater than 0.05, it's probably better to stop using this 

set of independent variables. Delete a variable with a high P-value (greater than 0.05) and rerun the 

regression until Significance F drops below 0.05. 
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• Most or all P-values should be below 0.05. 

• P-Values of each is the possibility that the output did not occur by chance. The lower the P-Value, higher 

the possibility that Y-Intercept is valid.  

• For example, a P-Value of 0.012 for a regression coefficient indicates that there is only a 1.2% chance 

that the result occurred only as a result of chance. 

• In the above example – There is 0.0000000000779% chance that the coefficient 0.000296533 (Income)  

Residue and Errors 
 

• Standard error is the estimate of the standard deviation of errors in the equation. 

• Se, measures the scatter of the observed values around the regression line. 

• Smaller the error, better the model fits. Se = 0, is a perfect fit 

• Standardized Residual - It is the residual divided by the standard deviation of the residual; that is, it is a 

residual standardized to have standard deviation 1. If standardized residuals is larger than about ±2.5, 

should be investigated as a potential outlier. For very large samples, many observations could have 

standardized residuals outside ±2.5 while not being outliers. 

• Se for regression coefficient is the amount of error in a regression coefficient. 
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